3D modelling of hilly terrains for security operations using airborne LiDAR and ortho-images

Vinod Kumar IFS vinodkumarifs@gmail.com

Model 1 (for overview of large area)

Modelling Aravalli hill range

Aravalli Range

Aravallis

- Means--- Line of Peaks
- Oldest mountains
- Running over 800 KM from Indian states Gujarat, Rajasthan, Haryana and New Delhi
- From Palanpur in Ahmadabad to Northern Delhi ridge
- Highest Peak: 1722 mts Guru Shikhar, Mt Abu
- Rivers: Banas, Luni, Sahibi, Sakhi and Sabarmati

3D Flythrough Aravalli Model

Data used: Landsat Imagery, 2015 15mts Aster DEM 30mts

3D Flythrough Aravalli model

Model 2 (for specific areas with land parcel details) 3D Fly through model of Mangar, Faridabad

Data used: Worldview 2 Imagery, 50cm DEM 1m from the stereo pair of WV2 data

Preparing Geo-referenced maps with land parcel details

e.g.Village Badkhal

Process of preparing Geo-referenced maps

- Scanning cadastral maps
- Digitizing cadastral maps
- Geo-referencing digitized map
- Overlaying with high resolution imageries

Scanning Musavis

Digitization

Georeferencing

3D mapping of Mangar, Faridabad

Mangar Bani

Ashra

3D mapping of Mangar, Faridabad

3D mapping of Mangar, Faridabad

Mangar 3D model

Mining Lake, Mangar

Model 3, Walkthrough models from LiDAR

LiDAR Technology (Light Detection And Ranging)

- Laser scanner
 Differential GPS
 Inertial
 Measurement Unit (IMU)

 On board computer
 - to store data

CLASSIFICATION

RETURN

INTENSITY

Point cloud & normalised point cloud

Rasterization of Point cloud

DSM generation = Gridding Point cloud (rasterization)

highest point of first return in each pixel are selected

DSM

single tree in point cloud & in CHM

Single tree in normalized point cloud

Single tree in CHM

Canopy Height Model in 3D

Tree parameters for 3D modelling

- Tree peak identification and crown delineation
- 2. Extraction of tree inclination and orientation
- 3. Species classification

Study Area

- •Area = 1.5 KM^2 , ortho A= 1.3 KM^2
- •92 % forest
- •Mainly coniferous forest *Pinus uncinata*
- •Slope 10° to 35° avg slope=14.5°
- •Undulating terrain
- •Frequent landslides

DTM

DSM

Ortho-image with elevation from DTM

LiDAR derived DTM

Height 1884.8

1726.8

1568.8

LiDAR derived DSM

Height ______ 1884.8

_ 1726.8

1568.8

Filter Size (m)	Height cut off (m)
1.35	>20
1.05	>16 and <= 20
0.75	>11 and <=16
0.45	<=11

128,918

Tree peak identification in point cloud

	No. of sample trees		No. tree peaks identified	Accura	су %	
		275	264		96	
Smooth CHM Tre		ee peaks detected		Final Peaks		
sCHM.	3 Filter size- 0.45 m	164	4,787		128,	918
sCHM!	5 Filter size- 0.75 m	92,	867			
sCHM	7 Filter size- 1.05 m	72,	609		N	
sCHM	Filter size- 1.35 m	54,	194			

Canopy Height Model

SEGMENTATION

Peak identification

Region Grow Segmentation

Segmentation on Ortho-image

1:1 correspondence

Tree species	reference	1:1 correspondence		accuracy %	
		Region growing	Thiessen polygons	Region growing	Thiessen polygons
Pinus uncinata	200	187	188	93.5	94.0
Pinus Sylvestris	51	48	49	94.1	96.1
Larix decidua	23	21	21	91.3	91.3
Picea abies	1	1	1	100	100.0
Total	275	257	259	93.5	94.2

Tree Height

Canopy Volume

Tree canopy enveloping surface

Canopy Volume contained within these two surfaces

Canopy Base Height

calculated as average height of canopy base touching surface

	Parameters extracted for inventory database				
	From the point cloud	Derived from 1st column	Other data layers		
1 2 3 4 5 6 7 8 9 10 11 12 13	Height Canopy Projection Area (CPA) Canopy Volume Canopy base height Canopy tilt Canopy orientation Canopy density Elevation Slope Aspect Location of Peak (cloud) Location of Peak (DSM) Location of centroid (CPA)	 15 Crown diameter 16 Perimeter CPA 17 Major & minor axis CPA 18 Local tree density 19 Local canopy gap % 20 Canopy Shape 21 Tree species 22 Biomass 23 Carbon 	24 Landuse 25 Landslide zone		
14	Average CPA height				

• INVENTORY DATA

Accuracy of extracted parameters

Parameter	R ²	RMSE
CPA (Region growing smooth)	0.87	3.67 m²
CPA (Thiessen smooth)	0.90	3.16 m²
Canopy base height (CBH)	0.73	0.86 m
Canopy tilt	0.57	3.26 degree

3D forest modeling from inventory data

• **Tree:** Location, Species, Height, Inclination, Orientatioion.

Actual Photo

Model Photo

Visualizing open forests

Visualizing forest path

Visualizing inaccessible areas

Visualizing landslide areas

3D Fly Through

of a real Forest

Model

https://www.youtube.com/watch?v=dkfoIP-e6

ALL ALLA CARDEN

Thanks

vinodkumarifs@gmail.com